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 This study analyzes the impact of market volatility regimes on 
gold price prediction accuracy using the VIX indicator and 
compares machine learning model performance across different 
market conditions. Daily data from September 2014 to 
November 2025 (2,773 observations) includes gold prices, VIX, 
DXY, and S&P 500. Volatility regimes are classified into Calm 
(VIX<15), Normal (15≤VIX<25), and Crisis (VIX≥25). Granger 
Causality tests validate predictive relationships, followed by a 
comparison of three models —ARIMA, LSTM, and GRU—at 1-day 
and 7-day horizons using walk-forward validation. Results show 
VIX change has the strongest predictive power (F-stat=9.676, 
p<0.001), followed by DXY and S&P 500. The GRU model 
performs better, with an RMSE of 0.98% and directional 
accuracy of 51.2%. Critical finding: accuracy varies substantially 
across regimes—Calm periods achieve RMSE of 0.61% 
(Dir.Acc=54.2%), while Crisis periods increase to 1.34% 
(Dir.Acc=47.3%). Short-term predictions (1-day, RMSE=0.67%) 
significantly outperform 7-day forecasts (RMSE=0.92%). 
Volatility regimes significantly influence the accuracy of gold 
predictions. GRU models excel during low-to-normal volatility 
but degrade during crises. Investors are advised to employ 
adaptive strategies with wider confidence intervals when the VIX 
is≥25. This research contributes a regime-aware forecasting 
framework for gold portfolio risk management. 
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1. INTRODUCTION 

1.1 Background 

Gold has maintained its status as a fundamental store of value and safe-haven asset 

throughout modern financial history, with global investment demand reaching approximately 

1,200 tonnes annually (World Gold Council, 2024). As financial markets become increasingly 

interconnected and volatile, accurate gold price forecasting has become crucial for portfolio 

managers, central banks, commodity traders, and individual investors seeking to optimize 

asset allocation and hedge against economic uncertainty. The COVID-19 pandemic (2020), the 
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subsequent inflation surge (2022), and recent geopolitical tensions have further underscored 

gold's role as a critical portfolio diversifier, with prices reaching all-time highs above $2,685 

per ounce. 

Traditional econometric approaches to gold forecasting, including ARIMA 

(AutoRegressive Integrated Moving Average) and GARCH (Generalized Autoregressive 

Conditional Heteroskedasticity) models, have dominated academic literature over the past 

decades. While these methods offer interpretability and theoretical foundations, they exhibit 

significant limitations in capturing complex nonlinear relationships and adapting to rapidly 

changing market conditions. The emergence of machine learning techniques, particularly 

recurrent neural networks (RNNs) and their variants such as LSTM (Long Short-Term Memory) 

and GRU (Gated Recurrent Unit), offers promising alternatives by enabling the learning of 

hierarchical temporal patterns from sequential data. 

However, existing deep learning applications in gold forecasting suffer from three 

critical gaps. First, most studies employ univariate or limited feature sets, ignoring 

macroeconomic factors that economic theory suggests should influence gold prices. Second, 

they lack rigorous statistical validation of feature selection, often including predictors without 

establishing causal relationships. Third, and most importantly, previous research has not 

systematically examined how prediction accuracy varies across different market volatility 

regimes—a critical oversight given that gold's safe-haven characteristics imply regime-

dependent behavior. 

The VIX (CBOE Volatility Index), often termed the "fear gauge," represents market 

expectations of near-term volatility and has been shown to correlate with gold prices during 

crisis periods. Yet no prior study has investigated whether forecasting model performance 

systematically differs across calm, normal, and crisis market conditions, as defined by VIX 

levels. This knowledge gap has significant practical implications: if models trained on historical 

data perform poorly during volatile periods when accurate forecasts are most needed, their 

practical utility for risk management becomes questionable. 

1.2 Research Problems 

Based on the background above, this study addresses the following research problems: 

1. Do market volatility regimes significantly affect gold price prediction accuracy? 

Specifically, how does model performance differ across calm (VIX<15), normal 

(15≤VIX<25), and crisis (VIX≥25) periods? 

2. Which macroeconomic features possess statistically validated predictive power for gold 

returns? Can Granger causality tests identify features with robust lagged relationships 

rather than spurious correlations? 

3. How do machine learning models (LSTM, GRU) compare to traditional methods (ARIMA) 

in different volatility regimes? Do modern architectures provide consistent advantages, 

or is their superiority regime-dependent? 

4. Does prediction accuracy degrade uniformly across forecasting horizons in different 

regimes? Are short-term predictions (1-day) more robust to regime changes than 

medium-term forecasts (7-day)? 

1.3 Research Objectives 

This study aims to: 
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1. Analyze the impact of market volatility regimes on gold price prediction accuracy 

using VIX-based classification 

2. Validate macroeconomic feature selection through Granger causality tests to establish 

statistically rigorous predictive relationships 

3. Compare the performance of traditional (ARIMA) and machine learning models 

(LSTM, GRU) across different market regimes 

4. Evaluate prediction accuracy degradation patterns across multiple forecasting 

horizons (1-day and 7-day) in each regime 

5. Develop a regime-aware forecasting framework that provides actionable insights for 

gold portfolio risk management 

1.4 Research Contributions 

This research contributes to both academic literature and practical applications: 

Theoretical Contributions: 

1. Regime-Dependent Forecasting Analysis: First study to systematically document how 

gold price prediction accuracy varies across VIX-defined market volatility regimes, 

revealing that calm periods achieve 54% higher accuracy than crisis periods. 

2. Statistical Feature Validation: Empirically establishes VIX change as the strongest 

lagged predictor of gold returns through Granger causality tests (F-stat=9.676, 

p<0.001), extending beyond contemporaneous correlation analysis in prior literature. 

3. Model Robustness Assessment: Demonstrates that machine learning superiority over 

traditional methods is regime-dependent, with GRU models excelling in low-volatility 

periods but experiencing 118% RMSE increase during crises. 

Practical Contributions: 

1. Regime-Aware Framework: Provides portfolio managers with empirical guidance on 

when to trust model forecasts (VIX<15) versus when to employ wider confidence 

intervals (VIX≥25). 

2. Horizon-Specific Strategies: Documents that 1-day predictions maintain 56.3% 

directional accuracy even during volatility, offering tactical trading opportunities, 

while 7-day forecasts become unreliable (52.4% accuracy). 

3. Implementation Guidelines: Delivers actionable recommendations for adaptive 

forecasting strategies, including dynamic confidence interval adjustment based on 

current VIX regime. 

1.5 Research Scope and Limitations 

Scope: 

• Temporal Coverage: Daily data from September 17, 2014 to November 7, 2025 (2,773 

observations), encompassing multiple market cycles including the 2015-2016 

commodity crisis, 2020 COVID-19 pandemic, and 2022 inflation surge. 

• Asset Focus: Gold futures (GC=F) as the primary target variable, representing 

institutional-grade gold pricing. 

• Feature Set: Four macroeconomic variables (VIX, DXY, S&P 500, Bitcoin) and technical 

indicators (RSI, volatility), totaling 12 features validated through Granger causality. 

• Model Comparison: Three model architectures (ARIMA, LSTM, GRU) evaluated across 

three volatility regimes. 
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• Forecast Horizons: Direct multi-step prediction at 1-day and 7-day horizons to balance 

short-term tactical and medium-term strategic needs. 

1.6 Paper Organization 

The remainder of this paper is structured as follows: 

Section 2 (Literature Review) surveys existing research on gold price determinants, 

traditional forecasting methods, machine learning applications in finance, and regime-

switching models, identifying gaps this study addresses. 

Section 3 (Research Methodology) describes data sources and preprocessing, presents 

Granger causality validation procedure, details model architectures (ARIMA, LSTM, GRU), and 

explains walk-forward validation with regime-specific evaluation. 

Section 4 (Results and Analysis) reports Granger causality test outcomes, compares model 

performance across regimes, analyzes prediction accuracy by horizon, and examines 

temporal patterns in forecast errors. 

Section 5 (Discussion) interprets findings in the context of gold's safe-haven characteristics, 

discusses implications for portfolio management strategies, and provides recommendations 

for adaptive forecasting in different volatility environments. 

Section 6 (Conclusion) summarizes key contributions, acknowledges limitations, and suggests 

directions for future research including extensions to other commodities and alternative 

regime detection methods. 

2. LITERATURE REVIEW 

2.1 Gold as a Safe-Haven Asset 

Gold's unique position in financial markets stems from its dual role as both a 

commodity and a monetary asset. Baur and Lucey (2010) formally define gold as a "safe haven" 

when it maintains positive or uncorrelated returns with stocks and bonds during periods of 

extreme market stress. Their analysis of major stock markets across 1995-2005 demonstrates 

that gold qualifies as a safe haven for most developed markets, particularly during crisis 

periods. This finding has been consistently validated during subsequent crises, including the 

2008 global financial crisis where gold prices surged 25% while equity markets declined 40% 

(Baur & McDermott, 2010). 

The theoretical foundations for gold's safe-haven characteristics rest on several 

mechanisms. First, gold serves as an inflation hedge due to its limited supply and intrinsic value 

preservation (Pukthuanthong & Roll, 2011). Second, during periods of currency devaluation or 

monetary policy uncertainty, investors reallocate to gold to preserve purchasing power (Capie 

et al., 2005). Third, gold exhibits negative correlation with the US dollar, creating natural 

hedging opportunities for dollar-denominated portfolios (Joy, 2011). Fourth, gold's low 

correlation with traditional financial assets enables portfolio diversification benefits that 

persist across different market regimes (Hillier et al., 2006). 

Recent research has examined gold's behavior during the COVID-19 pandemic and 

subsequent economic uncertainty. Salisu et al. (2021) document that gold's safe-haven 

properties strengthened during the pandemic, with correlations with equity markets becoming 

more negative during peak volatility periods. This regime-dependent behavior motivates our 

research focus: if gold's relationships with other assets vary by market conditions, forecasting 

models must account for these regime shifts to maintain accuracy. 
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2.2 Traditional Gold Price Forecasting Methods 

2.2.1 Time Series Econometric Models 

Classical approaches to gold forecasting predominantly employ time series 

econometric methods. ARIMA models, first popularized by Box and Jenkins (1970), remain 

widely used due to their simplicity and interpretability. Zhang and Wei (2010) apply ARIMA to 

monthly gold prices (1975-2008), achieving mean absolute percentage error (MAPE) of 4.2%. 

However, ARIMA's linear structure limits its ability to capture non-linear dynamics prevalent 

in financial markets. 

GARCH models address volatility clustering—the tendency for large price changes to 

follow large changes. Escribano and Granger (1998) demonstrate that gold returns exhibit 

significant ARCH effects, justifying GARCH applications. Tully and Lucey (2007) employ 

asymmetric GARCH variants to model gold volatility, finding that negative shocks impact 

volatility more than positive shocks. While GARCH models excel at volatility forecasting, their 

price prediction accuracy remains modest, with out-of-sample R² rarely exceeding 0.15. 

2.2.2 Regression-Based Approaches 

Fundamental analysis approaches model gold prices as functions of macroeconomic 

variables. Shafiee and Topal (2010) develop a multiple regression model incorporating oil 

prices, inflation, exchange rates, and interest rates, achieving R²=0.78 for long-term forecasts 

(annual). However, short-term prediction accuracy deteriorates significantly, with weekly 

forecasts showing R²<0.25. 

Cointegration-based methods exploit long-run equilibrium relationships. Ciner et al. 

(2013) identify cointegration between gold and the US dollar index, establishing vector error 

correction models (VECM) for forecasting. While theoretically appealing, VECM performance 

depends critically on correct specification of cointegrating relationships, which may be 

unstable across regimes. 

2.2.3 Limitations of Traditional Methods 

Despite extensive development, traditional econometric methods face three 

fundamental limitations for gold forecasting: 

1. Linearity Assumption: ARIMA and regression models assume linear relationships, 

failing to capture non-linear dynamics and threshold effects prevalent during regime 

transitions. 

2. Limited Feature Interaction: Traditional methods struggle to model complex 

interactions among multiple predictors, requiring manual specification of interaction 

terms. 

3. Regime Instability: Parameter estimates from pre-crisis periods often fail during 

volatile periods, as structural breaks invalidate historical relationships (Bildirici & 

Turkmen, 2015). 

These limitations motivate exploration of machine learning alternatives capable of 

learning non-linear patterns from data. 

2.3 Machine Learning in Financial Forecasting 

2.3.1 Neural Networks for Time Series 
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Artificial neural networks (ANNs) offer flexibility in approximating non-linear 

functions through layered architectures. Early applications to financial forecasting date to the 

1990s, with White (1988) demonstrating that feedforward networks can approximate complex 

price dynamics. However, standard ANNs struggle with sequential dependencies in time series 

data due to their lack of memory mechanisms. 

Recurrent Neural Networks (RNNs) address this limitation by maintaining hidden 

states that carry information across time steps. Elman (1990) introduces simple RNN 

architectures, but training difficulties due to vanishing/exploding gradients limited their 

practical adoption until the development of Long Short-Term Memory (LSTM) networks. 

2.3.2 LSTM and GRU Architectures 

Hochreiter and Schmidhuber (1997) introduce LSTM networks with gating 

mechanisms that enable learning long-range dependencies. LSTM cells use input, forget, and 

output gates to regulate information flow, allowing gradients to propagate across many time 

steps without vanishing. This breakthrough enabled successful applications to long-horizon 

sequence modeling tasks. 

Fischer and Krauss (2018) apply LSTM to S&P 500 stock prediction, achieving 2.1% 

annualized excess returns after transaction costs. Their work demonstrates that LSTM can 

extract profitable signals from high-dimensional feature spaces. However, LSTM's complexity 

(requiring ~4× parameters compared to simpler variants) increases training time and 

overfitting risk. 

Cho et al. (2014) propose Gated Recurrent Units (GRU) as a simplified alternative to 

LSTM. GRU reduces three gates to two (reset and update), decreasing parameters by 

approximately 25% while maintaining comparable performance. Chung et al. (2014) 

empirically demonstrate that GRU matches LSTM accuracy on most sequence modeling tasks 

while training 30-40% faster. This efficiency advantage makes GRU particularly attractive for 

financial applications requiring frequent model retraining. 

2.3.3 Deep Learning for Gold Forecasting 

Recent studies have begun applying deep learning to gold price prediction. 

Kristjanpoller and Minutolo (2018) employ hybrid CNN-LSTM models for gold forecasting, 

achieving MAPE of 1.8% for one-week-ahead predictions. Their feature set includes technical 

indicators but excludes macroeconomic variables, limiting economic interpretability. 

Livieris et al. (2020) compare various LSTM architectures for gold prediction using only 

historical prices. They report RMSE improvements of 15-20% over ARIMA baselines. However, 

their models lack statistical validation of feature importance and provide no analysis of regime-

dependent performance. 

Patel et al. (2022) apply attention mechanisms to gold forecasting, achieving directional 

accuracy of 58% for daily predictions. Their attention analysis reveals that recent time steps 

(t-1 to t-5) receive highest weights, but they do not investigate whether attention patterns 

differ across market regimes. 

Critical Gap: Despite growing interest in deep learning for gold forecasting, no prior 

study systematically examines how model performance varies across volatility regimes. This 

represents a significant oversight, as practical deployment requires understanding when 

models can be trusted versus when their predictions become unreliable. 

2.4 Granger Causality in Feature Selection 
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2.4.1 Theoretical Foundations 

Granger (1969) introduces the concept of causality in time series: variable X "Granger-

causes" Y if past values of X improve prediction of Y beyond what past values of Y alone provide. 

Formally, in a bivariate VAR model: 

 

X Granger-causes Y if the joint hypothesis 𝛽1 = 𝛽2 =. . . = 𝛽𝑝 = 0can be rejected. This 

framework provides rigorous statistical validation of predictive relationships beyond mere 

correlation. 

2.4.2 Applications in Finance 

Granger causality has been extensively applied to financial markets. Cheung and Ng 

(1996) test causality between US and Japanese stock markets, documenting bidirectional 

relationships. Hong (2001) extends Granger tests to non-linear settings, showing that volatility 

spillovers often exhibit causal relationships even when returns do not. 

In gold markets, several studies employ Granger causality. Reboredo (2013) tests 

causality between gold and oil prices, finding unidirectional causality from oil to gold at weekly 

frequency. Bouri et al. (2017) examine gold-Bitcoin causality, reporting time-varying 

relationships that strengthen during high-volatility periods. However, these studies focus on 

bivariate relationships rather than multivariate feature selection for forecasting models. 

2.4.3 Integration with Machine Learning 

Recent work has begun integrating Granger causality tests with machine learning 

feature selection. Tank et al. (2018) develop neural Granger causality methods using sparse 

penalties. Nauta et al. (2019) propose attention-based architectures that implicitly learn causal 

structures. However, these approaches remain largely unexplored in financial forecasting 

contexts. 

Our Contribution: We employ Granger causality as a pre-screening step before model 

training, ensuring that included features have statistically validated predictive power rather 

than spurious correlations. This bridges econometric rigor with machine learning flexibility. 

2.5 Volatility Index (VIX) and Market Regimes 

2.5.1 VIX as Market Fear Gauge 

The CBOE Volatility Index (VIX) represents implied volatility derived from S&P 500 

options prices, reflecting market expectations of 30-day forward volatility. Whaley (2000) 

demonstrates that VIX spikes precede market downturns, earning it the moniker "fear gauge." 

VIX values below 15 typically indicate complacency, 15-25 represents normal uncertainty, and 

above 25-30 signals crisis conditions. 

2.5.2 VIX-Gold Relationship 

Several studies document contemporaneous correlation between VIX and gold prices. 

Baur and McDermott (2010) show that gold appreciates when VIX exceeds crisis thresholds 

(VIX>30). Dee et al. (2013) report correlation coefficients of 0.15-0.25 between daily VIX 



36                                                       Datokarama Journal of Information Technology ISSN xxxxx xxx 

 

Muhammad Fikri (The Impact of Market Volatility Regimes on Gold Price Prediction Accuracy: A VIX-

Based Machine Learning Approach) 

changes and gold returns during 2007-2012, with correlations strengthening to 0.45 during 

extreme events. 

However, these studies examine contemporaneous relationships rather than lagged 

predictive power. No prior research has tested whether VIX changes Granger-cause gold 

returns, despite theoretical predictions that fear spikes should predict subsequent gold inflows 

as investors rebalance portfolios. 

2.5.3 Regime-Switching Models 

Regime-switching models explicitly incorporate state-dependent dynamics. Hamilton 

(1989) introduces Markov-switching models where parameters shift between discrete states. 

In gold markets, Hammoudeh and Yuan (2008) identify two regimes (calm and volatile) with 

different return distributions and persistence properties. 

However, regime-switching models typically identify regimes endogenously through 

maximum likelihood, without linking them to observable indicators like VIX. Our approach uses 

VIX-based regime classification, providing transparent, real-time regime identification for 

practical deployment. 

2.6 Research Gaps and Study Positioning 

Based on the literature review, we identify four critical gaps this study addresses: 

Gap 1: Regime-Dependent Forecasting 

• Literature: Studies examine gold forecasting or regime detection separately 

• Gap: No systematic analysis of how prediction accuracy varies across VIX-defined 

volatility regimes 

• Our Contribution: First study to document that calm period RMSE (0.61%) is 54% 

lower than crisis period RMSE (1.34%) 

Gap 2: Lagged VIX Predictive Power 

• Literature: VIX-gold correlation documented but only contemporaneously 

• Gap: No Granger causality tests of VIX → gold returns 

• Our Contribution: Empirically establish VIX change Granger-causes gold returns across 

all tested lags (p<0.001) 

Gap 3: Statistical Feature Validation 

• Literature: Deep learning studies include features without causality testing 

• Gap: Risk of overfitting to spurious correlations 

• Our Contribution: Pre-screen features via Granger causality before model training, 

ensuring statistical rigor 

Gap 4: Model Robustness Assessment 

• Literature: Model comparisons typically use single train-test split 

• Gap: Unknown whether ML superiority persists across regimes 
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• Our Contribution: Walk-forward validation across 69 iterations reveals GRU 

advantages are regime-dependent 

These gaps collectively represent a significant opportunity: by integrating statistical 

validation, regime analysis, and machine learning, we provide a more rigorous and practically 

useful framework for gold forecasting. 

3. RESEARCH METHODOLOGY 

3.1 Research Design 

This study employs a quantitative approach with experimental design comparing 

multiple forecasting models across different market volatility regimes. The research 

framework consists of four main stages: (1) data collection and preprocessing, (2) statistical 

validation via Granger causality tests, (3) model development and training, and (4) regime-

specific evaluation using walk-forward validation. Figure 1 illustrates the complete research 

workflow. 

3.2 Data Collection and Preprocessing 

3.2.1 Data Sources 

We collect daily closing prices from Yahoo Finance for the period September 17, 2014 to 

November 7, 2025, yielding 2,773 observations. This timeframe encompasses multiple market 

cycles including: 

• 2015-2016: Commodity price crisis 

• 2018: US-China trade war volatility 

• 2020: COVID-19 pandemic shock 

• 2022: Inflation surge and monetary tightening 

• 2023-2025: Post-pandemic normalization 

The dataset includes five primary instruments: 

1. Gold Futures (GC=F): Target variable, representing institutional gold pricing 

2. VIX Index (^VIX): CBOE Volatility Index, market fear gauge 

3. US Dollar Index (DX-Y.NYB): DXY currency strength indicator 

4. S&P 500 (^GSPC): Equity market benchmark 

5. Bitcoin (BTC-USD): Alternative asset consideration 

Data Quality Checks: 

• Missing value analysis: <0.5% missing observations handled via forward-fill 

• Outlier detection: Winsorization at 0.5th and 99.5th percentiles 

• Stationarity verification: ADF tests confirm all series stationary at p<0.01 

3.2.2 Feature Engineering 

Percentage Returns: To address scale disparities (Bitcoin: $315-$103,568 vs Gold: $1,045-

$2,685), all prices are transformed to percentage returns: 

 

Technical Indicators: 
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• RSI (14-day): Relative Strength Index measuring momentum 

• Rolling Volatility (20-day): Standard deviation of returns 

• 30-day Correlation: Time-varying gold-Bitcoin relationship 

VIX-Based Features: 

• VIX Level: Raw index value 

• VIX Change: First difference (Δ VIX) 

• VIX Regime: Categorical classification 

Regime Cases 
if VIX < 15 Calm 
if 15 < VIX < 25 Normal 
if VIX > = 25 Crisis 

 

Final Feature Matrix (12 variables): 

 

Note: Bitcoin features excluded from final model based on Granger causality results (see 

Section 4.1). 

3 3.3 Statistical Validation: Granger Causality Tests 

3.3.1 Methodology 

Before model training, we rigorously validate feature selection using Granger causality. For 

predictor X and target Y (gold returns), we test: 

𝑯𝟎: 𝑿 does not Granger-cause 𝒀 

Using bivariate VAR framework: 

 

Null hypothesis 𝐻0: 𝛽1 = 𝛽2 =. . . = 𝛽𝑝 = 0 tested via F-statistic.  

Test Specifications: 
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• Lag orders: p ∈ {1, 3, 5, 7, 10, 15} days 

• Significance level: α = 0.05 

• Software: Python statsmodels.tsa.stattools.grangercausalitytests 

3.3.2 Stationarity Pre-Testing 

Granger tests require stationary series. Augmented Dickey-Fuller (ADF) tests verify: 

 

Testing 𝐻0: 𝛾 = 0(unit root) vs 𝐻1: 𝛾 < 0 (stationary).  

Results: All return series reject unit root at p<0.01, confirming stationarity. 

3.4 Model Architectures 

3.4.1 Baseline: ARIMA Model 

ARIMA(p,d,q) serves as traditional baseline: 

𝝓(𝑩)(𝟏 − 𝑩)𝒅𝒀𝒕 = 𝜽(𝑩)𝝐𝒕 

where: 

• p = autoregressive order 

• d = differencing order (d=0 for stationary returns) 

• q = moving average order 

• B = backshift operator 

3.4.2 LSTM (Long Short-Term Memory) 

Architecture: 

• Input: 60-day lookback window (T=60, d=8 features) 

• LSTM Layer 1: 128 units 

• Dropout: 0.3 

• LSTM Layer 2: 64 units 

• Dropout: 0.2 

• Dense Layer 1: 32 units, ReLU activation 

• Output Layer: 2 units (1-day, 7-day predictions) 

3.4.3 GRU (Gated Recurrent Unit) 

Architecture: 

• Input: 60-day lookback (T=60, d=8) 

• GRU Layer 1: 128 units 

• Dropout: 0.4 

• GRU Layer 2: 32 units 

• Dropout: 0.3 

• Dense Layer 1: 64 units, ReLU 

• Dense Layer 2: 32 units, ReLU 

• Output Layer: 2 units 
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3.5 Training Procedure 

3.5.1 Loss Function 

Huber loss combines MSE sensitivity with MAE robustness: 

 

with δ=1.0, balancing small error precision and outlier robustness. 

3.5.2 Optimization 

• Algorithm: Adam optimizer 

• Learning rate: 0.00763 (Optuna-selected) 

• Batch size: 128 

• Early stopping: Patience=20 epochs 

• Max epochs: 200 

3.5.3 Direct Multi-Horizon Prediction 

Unlike iterative forecasting (which compounds errors), we use direct prediction: 

• Model outputs 2-dimensional vector: [1-day forecast, 7-day forecast] 

• Each horizon trained simultaneously 

• Reduces error accumulation 

3.6 Evaluation Metrics 

Point Forecast Accuracy: 

1. RMSE (Root Mean Squared Error): 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑

𝑁

𝑖=1

(𝑦𝑖 − 𝑦̂𝑖)
2 

2. MAE (Mean Absolute Error): 

𝑀𝐴𝐸 =
1

𝑁
∑

𝑁

𝑖=1

∣ 𝑦𝑖 − 𝑦̂𝑖 ∣ 

3. R² (Coefficient of Determination): 

𝑅2 = 1 −
∑(𝑦𝑖 − 𝑦̂𝑖)2

∑(𝑦𝑖 − 𝑦̄)2  

Directional Accuracy: 

𝐷𝐴 =
1

𝑁
∑

𝑁

𝑖=1

𝟙[sign(𝑦𝑖) = sign(𝑦̂𝑖)] × 100% 

 

Bias (Systematic Over/Under-prediction): 
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𝐵𝑖𝑎𝑠 =
1

𝑁
∑

𝑁

𝑖=1

(𝑦𝑖 − 𝑦̂𝑖) 

 

3.8 Software and Computational Setup 

• Programming Language: Python 3.10 

• Deep Learning: TensorFlow 2.13.0 + Keras 

• Statistical Tests: statsmodels 0.14.0 

• Optimization: Optuna 3.3.0 

• Hardware: Google Colab (Tesla T4 GPU when available) 

• Training Time: ~90 minutes total (30 Optuna trials + final training) 

4. RESULTS AND ANALYSIS 

4.1 Granger Causality Test Results 

Table 1 presents statistical validation of predictive relationships. 

Table 1: Granger Causality Test Results 

 

Note: *** p<0.001, ** p<0.01, * p<0.05. Tests conducted at lags {1,3,5,7,10,15} days. 

4.2 Model Performance Comparison 

Table 2 summarizes overall performance across all regimes. 

Table 2: Overall Model Performance (Walk-Forward Validation) 

 

4.3 Performance by Prediction Horizon 

Table 3 decomposes accuracy by forecasting horizon. 

Table 3: GRU Performance by Horizon 

 

4.5 Model Comparison Across Regimes 
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Table 5 compares all three models in each regime. 

Table 5: RMSE (%) by Model and Regime 

 

 

5. DISCUSSION 

5.1 Principal Findings 

This study provides three major contributions to gold forecasting literature: 

Finding 1: VIX as Lagged Predictor (Addresses Gap 2) 

We establish, for the first time, that VIX change Granger-causes gold returns with statistically 

significant relationships across all tested lags (1-15 days, all p<0.001). The optimal 3-day lag 

suggests flight-to-safety mechanisms operate with short delays, likely reflecting: 

• Portfolio manager decision-making time (1-2 days) 

• Order execution and settlement (T+2) 

• Gradual information diffusion across investor types 

Previous studies documented only contemporaneous VIX-gold correlation (Baur & McDermott, 

2010; Dee et al., 2013). Our finding extends this to predictive power, enabling proactive rather 

than reactive gold allocation strategies. 

Finding 2: Regime-Dependent Forecasting (Addresses Gap 1) 

The dramatic accuracy variation across volatility regimes—Calm RMSE of 0.614% versus Crisis 

RMSE of 1.341% (118% increase)—represents a critical insight for practical implementation. 

This finding suggests: 

Economic Interpretation: 

• During calm periods, gold behaves according to stable, mean-reverting patterns 

amenable to quantitative modeling 

• During crises, structural breaks and panic-driven flows overwhelm historical 

relationships 

• The VIX threshold at 25 represents a critical regime boundary where model reliability 

deteriorates sharply 

Practical Implications: 

• Risk management systems should employ regime-specific confidence intervals 

• Position sizing should scale inversely with VIX level 

• Manual oversight becomes essential when VIX > 25 

Finding 3: Machine Learning Robustness Assessment (Addresses Gap 4) 
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Our walk-forward validation across 69 iterations reveals that GRU's superiority over 

traditional methods persists across all regimes but diminishes during crises: 

• Calm: 44% RMSE advantage 

• Normal: 26% advantage 

• Crisis: 8% advantage 

This pattern suggests complex models extract value from stable patterns but offer limited 

advantage when noise dominates signal. The finding has implications for model selection: 

during sustained high-volatility periods, simpler models may suffice, reducing computational 

costs. 

References 

[1]  Box, G. E., & Jenkins, G. M. (1970). Time series analysis: Forecasting and control. 
Holden-Day. 

[2]  Granger, C. W. J. (1969). Investigating causal relations by econometric models and 
cross-spectral methods. Econometrica, 37(3), 424-438. 
https://doi.org/10.2307/1912791 

[3]  Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the 
variance of United Kingdom inflation. Econometrica, 50(4), 987-1007. 
https://doi.org/10.2307/1912773 

[4]  Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary time 
series and the business cycle. Econometrica, 57(2), 357-384. 
https://doi.org/10.2307/1912559 

[5]  Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive 
time series with a unit root. Journal of the American Statistical Association, 74(366), 
427-431. https://doi.org/10.1080/01621459.1979.10482531  

[6]  Baur, D. G., & Lucey, B. M. (2010). Is gold a hedge or a safe haven? An analysis of stocks, 
bonds and gold. Financial Review, 45(2), 217-229. https://doi.org/10.1111/j.1540-
6288.2010.00244.x 

[7]  Baur, D. G., & McDermott, T. K. (2010). Is gold a safe haven? International evidence. 
Journal of Banking & Finance, 34(8), 1886-1898. 
https://doi.org/10.1016/j.jbankfin.2009.12.008 

[8]  Capie, F., Mills, T. C., & Wood, G. (2005). Gold as a hedge against the dollar. Journal of 
International Financial Markets, Institutions and Money, 15(4), 343-352. 
https://doi.org/10.1016/j.intfin.2004.07.002 

[9]  Hillier, D., Draper, P., & Faff, R. (2006). Do precious metals shine? An investment 
perspective. Financial Analysts Journal, 62(2), 98-106. 
https://doi.org/10.2469/faj.v62.n2.4085 

[10]  Pukthuanthong, K., & Roll, R. (2011). Gold and the dollar (and the euro, pound, and 
yen). Journal of Banking & Finance, 35(8), 2070-2083. 
https://doi.org/10.1016/j.jbankfin.2011.01.014 

[11]  Joy, M. (2011). Gold and the US dollar: Hedge or haven? Finance Research Letters, 8(3), 
120-131. https://doi.org/10.1016/j.frl.2011.01.001 

[12]  Reboredo, J. C. (2013). Is gold a safe haven or a hedge for the US dollar? Implications for 
risk management. Journal of Banking & Finance, 37(8), 2665-2676. 
https://doi.org/10.1016/j.jbankfin.2013.03.020 

[13]  Salisu, A. A., Raheem, I. D., & Vo, X. V. (2021). Assessing the safe haven property of the 
gold market during COVID-19 pandemic. International Review of Financial Analysis, 74, 
101666. https://doi.org/10.1016/j.irfa.2021.101666 

https://doi.org/10.1080/01621459.1979.10482531
https://doi.org/10.2469/faj.v62.n2.4085
https://doi.org/10.1016/j.jbankfin.2013.03.020


44                                                       Datokarama Journal of Information Technology ISSN xxxxx xxx 

 

Muhammad Fikri (The Impact of Market Volatility Regimes on Gold Price Prediction Accuracy: A VIX-

Based Machine Learning Approach) 

[14]  Akhtaruzzaman, M., Boubaker, S., & Sensoy, A. (2021). Financial contagion during 
COVID-19 crisis. Finance Research Letters, 38, 101604. 
https://doi.org/10.1016/j.frl.2020.101604 

[15]  Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural 
Computation, 9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735 

[16]  Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & 
Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for 
statistical machine translation. In Proceedings of EMNLP (pp. 1724-1734). 
https://doi.org/10.3115/v1/D14-1179 

[17]  Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated 
recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555. 
https://arxiv.org/abs/1412.3555 

[18]  Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14(2), 179-211. 
https://doi.org/10.1207/s15516709cog1402_1 

[19]  Bahdanau, D., Cho, K., & Bengio, Y. (2015). Neural machine translation by jointly 
learning to align and translate. In Proceedings of ICLR. 
https://arxiv.org/abs/1409.0473 

[20]  Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, 
I. (2017). Attention is all you need. In Advances in Neural Information Processing 
Systems (pp. 5998-6008). 

[21]  Fischer, T., & Krauss, C. (2018). Deep learning with long short-term memory networks 
for financial market predictions. European Journal of Operational Research, 270(2), 
654-669. https://doi.org/10.1016/j.ejor.2017.11.054 

[22]  Kim, T., & Kim, H. Y. (2019). Forecasting stock prices with a feature fusion LSTM-CNN 
model using different representations of the same data. PLoS ONE, 14(2), e0212320. 
https://doi.org/10.1371/journal.pone.0212320 

[23]  McNally, S., Roche, J., & Caton, S. (2018). Predicting the price of Bitcoin using machine 
learning. In 2018 26th Euromicro International Conference on Parallel, Distributed and 
Network-based Processing (pp. 339-343). IEEE. 
https://doi.org/10.1109/PDP2018.2018.00060 

[24]  Livieris, I. E., Kiriakidou, N., Stavroyiannis, S., & Pintelas, P. (2021). An advanced CNN-
LSTM model for cryptocurrency forecasting. Electronics, 10(3), 287. 
https://doi.org/10.3390/electronics10030287 

https://doi.org/10.1016/j.frl.2020.101604
https://doi.org/10.1207/s15516709cog1402_1
https://doi.org/10.1371/journal.pone.0212320

