H %
%@5 Datokarama Journal of Information Technology

The Impact of Market Volatility Regimes on Gold Price
Prediction Accuracy: A VIX-Based Machine Learning

Approach

Mohammad Fikri a1*

a Informatika, Fakultas Sains dan Teknologi, UIN Datokarama Palu, Palu, Indonesia

1 moh.fikri@uindatokarama.ac.id *

* Penulis Koresponden

INFO ARTIKEL

Histori Artikel
Pengajuan : 09 April 2025
Diperbaiki : 13 Juni 2025
Diterima: 25 Juni 2025

Keywords

Gold Price Prediction, Volatility
Regimes, VIX, Granger
Causality, GRU, LSTM, Machine
Learning, Multi-Horizon
Forecasting

1. INTRODUCTION

1.1 Background

ABSTRACT

This study analyzes the impact of market volatility regimes on
gold price prediction accuracy using the VIX indicator and
compares machine learning model performance across different
market conditions. Daily data from September 2014 to
November 2025 (2,773 observations) includes gold prices, VIX,
DXY, and S&P 500. Volatility regimes are classified into Calm
(VIX<15), Normal (15<VIX<25), and Crisis (VIX225). Granger
Causality tests validate predictive relationships, followed by a
comparison of three models —ARIMA, LSTM, and GRU—at 1-day
and 7-day horizons using walk-forward validation. Results show
VIX change has the strongest predictive power (F-stat=9.676,
p<0.001), followed by DXY and S&P 500. The GRU model
performs better, with an RMSE of 0.98% and directional
accuracy of 51.2%. Critical finding: accuracy varies substantially
across regimes—Calm periods achieve RMSE of 0.61%
(Dir.Acc=54.2%), while Crisis periods increase to 1.34%
(Dir.Acc=47.3%). Short-term predictions (1-day, RMSE=0.67%)
significantly outperform 7-day forecasts (RMSE=0.92%).
Volatility regimes significantly influence the accuracy of gold
predictions. GRU models excel during low-to-normal volatility
but degrade during crises. Investors are advised to employ
adaptive strategies with wider confidence intervals when the VIX
is=25. This research contributes a regime-aware forecasting
framework for gold portfolio risk management.

Ini adalah artikel akses terbuka di bawah lisensi CC-BY-SA.

Gold has maintained its status as a fundamental store of value and safe-haven asset
throughout modern financial history, with global investment demand reaching approximately
1,200 tonnes annually (World Gold Council, 2024). As financial markets become increasingly
interconnected and volatile, accurate gold price forecasting has become crucial for portfolio
managers, central banks, commodity traders, and individual investors seeking to optimize
asset allocation and hedge against economic uncertainty. The COVID-19 pandemic (2020), the
|
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subsequent inflation surge (2022), and recent geopolitical tensions have further underscored
gold's role as a critical portfolio diversifier, with prices reaching all-time highs above $2,685
per ounce.

Traditional econometric approaches to gold forecasting, including ARIMA
(AutoRegressive Integrated Moving Average) and GARCH (Generalized Autoregressive
Conditional Heteroskedasticity) models, have dominated academic literature over the past
decades. While these methods offer interpretability and theoretical foundations, they exhibit
significant limitations in capturing complex nonlinear relationships and adapting to rapidly
changing market conditions. The emergence of machine learning techniques, particularly
recurrent neural networks (RNNs) and their variants such as LSTM (Long Short-Term Memory)
and GRU (Gated Recurrent Unit), offers promising alternatives by enabling the learning of
hierarchical temporal patterns from sequential data.

However, existing deep learning applications in gold forecasting suffer from three
critical gaps. First, most studies employ univariate or limited feature sets, ignoring
macroeconomic factors that economic theory suggests should influence gold prices. Second,
they lack rigorous statistical validation of feature selection, often including predictors without
establishing causal relationships. Third, and most importantly, previous research has not
systematically examined how prediction accuracy varies across different market volatility
regimes—a critical oversight given that gold's safe-haven characteristics imply regime-
dependent behavior.

The VIX (CBOE Volatility Index), often termed the "fear gauge," represents market
expectations of near-term volatility and has been shown to correlate with gold prices during
crisis periods. Yet no prior study has investigated whether forecasting model performance
systematically differs across calm, normal, and crisis market conditions, as defined by VIX
levels. This knowledge gap has significant practical implications: if models trained on historical
data perform poorly during volatile periods when accurate forecasts are most needed, their
practical utility for risk management becomes questionable.

1.2 Research Problems
Based on the background above, this study addresses the following research problems:

1. Do market volatility regimes significantly affect gold price prediction accuracy?
Specifically, how does model performance differ across calm (VIX<15), normal
(15=5VIX<25), and crisis (VIX=25) periods?

2. Which macroeconomic features possess statistically validated predictive power for gold
returns? Can Granger causality tests identify features with robust lagged relationships
rather than spurious correlations?

3. How do machine learning models (LSTM, GRU) compare to traditional methods (ARIMA)
in different volatility regimes? Do modern architectures provide consistent advantages,
or is their superiority regime-dependent?

4. Does prediction accuracy degrade uniformly across forecasting horizons in different
regimes? Are short-term predictions (1-day) more robust to regime changes than
medium-term forecasts (7-day)?

1.3 Research Objectives

This study aims to:
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1. Analyze the impact of market volatility regimes on gold price prediction accuracy
using VIX-based classification

2. Validate macroeconomic feature selection through Granger causality tests to establish
statistically rigorous predictive relationships

3. Compare the performance of traditional (ARIMA) and machine learning models
(LSTM, GRU) across different market regimes

4. Evaluate prediction accuracy degradation patterns across multiple forecasting
horizons (1-day and 7-day) in each regime

5. Develop a regime-aware forecasting framework that provides actionable insights for
gold portfolio risk management

1.4 Research Contributions
This research contributes to both academic literature and practical applications:
Theoretical Contributions:

1. Regime-Dependent Forecasting Analysis: First study to systematically document how
gold price prediction accuracy varies across VIX-defined market volatility regimes,
revealing that calm periods achieve 54% higher accuracy than crisis periods.

2. Statistical Feature Validation: Empirically establishes VIX change as the strongest
lagged predictor of gold returns through Granger causality tests (F-stat=9.676,
p<0.001), extending beyond contemporaneous correlation analysis in prior literature.

3. Model Robustness Assessment: Demonstrates that machine learning superiority over
traditional methods is regime-dependent, with GRU models excelling in low-volatility
periods but experiencing 118% RMSE increase during crises.

Practical Contributions:

1. Regime-Aware Framework: Provides portfolio managers with empirical guidance on
when to trust model forecasts (VIX<15) versus when to employ wider confidence
intervals (VIX=25).

2. Horizon-Specific Strategies: Documents that 1-day predictions maintain 56.3%
directional accuracy even during volatility, offering tactical trading opportunities,
while 7-day forecasts become unreliable (52.4% accuracy).

3. Implementation Guidelines: Delivers actionable recommendations for adaptive
forecasting strategies, including dynamic confidence interval adjustment based on
current VIX regime.

1.5 Research Scope and Limitations
Scope:

e Temporal Coverage: Daily data from September 17, 2014 to November 7, 2025 (2,773
observations), encompassing multiple market cycles including the 2015-2016
commodity crisis, 2020 COVID-19 pandemic, and 2022 inflation surge.

e Asset Focus: Gold futures (GC=F) as the primary target variable, representing
institutional-grade gold pricing.

e Feature Set: Four macroeconomic variables (VIX, DXY, S&P 500, Bitcoin) and technical
indicators (RSI, volatility), totaling 12 features validated through Granger causality.

e Model Comparison: Three model architectures (ARIMA, LSTM, GRU) evaluated across

three volatility regimes.
|
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e Forecast Horizons: Direct multi-step prediction at 1-day and 7-day horizons to balance
short-term tactical and medium-term strategic needs.

1.6 Paper Organization
The remainder of this paper is structured as follows:

Section 2 (Literature Review) surveys existing research on gold price determinants,
traditional forecasting methods, machine learning applications in finance, and regime-
switching models, identifying gaps this study addresses.

Section 3 (Research Methodology) describes data sources and preprocessing, presents
Granger causality validation procedure, details model architectures (ARIMA, LSTM, GRU), and
explains walk-forward validation with regime-specific evaluation.

Section 4 (Results and Analysis) reports Granger causality test outcomes, compares model
performance across regimes, analyzes prediction accuracy by horizon, and examines
temporal patterns in forecast errors.

Section 5 (Discussion) interprets findings in the context of gold's safe-haven characteristics,
discusses implications for portfolio management strategies, and provides recommendations
for adaptive forecasting in different volatility environments.

Section 6 (Conclusion) summarizes key contributions, acknowledges limitations, and suggests
directions for future research including extensions to other commodities and alternative
regime detection methods.

2. LITERATURE REVIEW
2.1 Gold as a Safe-Haven Asset

Gold's unique position in financial markets stems from its dual role as both a
commodity and a monetary asset. Baur and Lucey (2010) formally define gold as a "safe haven"
when it maintains positive or uncorrelated returns with stocks and bonds during periods of
extreme market stress. Their analysis of major stock markets across 1995-2005 demonstrates
that gold qualifies as a safe haven for most developed markets, particularly during crisis
periods. This finding has been consistently validated during subsequent crises, including the
2008 global financial crisis where gold prices surged 25% while equity markets declined 40%
(Baur & McDermott, 2010).

The theoretical foundations for gold's safe-haven characteristics rest on several
mechanisms. First, gold serves as an inflation hedge due to its limited supply and intrinsic value
preservation (Pukthuanthong & Roll, 2011). Second, during periods of currency devaluation or
monetary policy uncertainty, investors reallocate to gold to preserve purchasing power (Capie
et al.,, 2005). Third, gold exhibits negative correlation with the US dollar, creating natural
hedging opportunities for dollar-denominated portfolios (Joy, 2011). Fourth, gold's low
correlation with traditional financial assets enables portfolio diversification benefits that
persist across different market regimes (Hillier et al., 2006).

Recent research has examined gold's behavior during the COVID-19 pandemic and
subsequent economic uncertainty. Salisu et al. (2021) document that gold's safe-haven
properties strengthened during the pandemic, with correlations with equity markets becoming
more negative during peak volatility periods. This regime-dependent behavior motivates our
research focus: if gold's relationships with other assets vary by market conditions, forecasting
models must account for these regime shifts to maintain accuoracy.
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2.2 Traditional Gold Price Forecasting Methods

2.2.1 Time Series Econometric Models

Classical approaches to gold forecasting predominantly employ time series
econometric methods. ARIMA models, first popularized by Box and Jenkins (1970), remain
widely used due to their simplicity and interpretability. Zhang and Wei (2010) apply ARIMA to
monthly gold prices (1975-2008), achieving mean absolute percentage error (MAPE) of 4.2%.
However, ARIMA's linear structure limits its ability to capture non-linear dynamics prevalent
in financial markets.

GARCH models address volatility clustering—the tendency for large price changes to
follow large changes. Escribano and Granger (1998) demonstrate that gold returns exhibit
significant ARCH effects, justifying GARCH applications. Tully and Lucey (2007) employ
asymmetric GARCH variants to model gold volatility, finding that negative shocks impact
volatility more than positive shocks. While GARCH models excel at volatility forecasting, their
price prediction accuracy remains modest, with out-of-sample R? rarely exceeding 0.15.

2.2.2 Regression-Based Approaches

Fundamental analysis approaches model gold prices as functions of macroeconomic
variables. Shafiee and Topal (2010) develop a multiple regression model incorporating oil
prices, inflation, exchange rates, and interest rates, achieving R?=0.78 for long-term forecasts
(annual). However, short-term prediction accuracy deteriorates significantly, with weekly
forecasts showing R?<0.25.

Cointegration-based methods exploit long-run equilibrium relationships. Ciner et al.
(2013) identify cointegration between gold and the US dollar index, establishing vector error
correction models (VECM) for forecasting. While theoretically appealing, VECM performance
depends critically on correct specification of cointegrating relationships, which may be
unstable across regimes.

2.2.3 Limitations of Traditional Methods

Despite extensive development, traditional econometric methods face three
fundamental limitations for gold forecasting:

1. Linearity Assumption: ARIMA and regression models assume linear relationships,
failing to capture non-linear dynamics and threshold effects prevalent during regime
transitions.

2. Limited Feature Interaction: Traditional methods struggle to model complex
interactions among multiple predictors, requiring manual specification of interaction
terms.

3. Regime Instability: Parameter estimates from pre-crisis periods often fail during
volatile periods, as structural breaks invalidate historical relationships (Bildirici &
Turkmen, 2015).

These limitations motivate exploration of machine learning alternatives capable of
learning non-linear patterns from data.

2.3 Machine Learning in Financial Forecasting

2.3.1 Neural Networks for Time Series
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Artificial neural networks (ANNs) offer flexibility in approximating non-linear
functions through layered architectures. Early applications to financial forecasting date to the
1990s, with White (1988) demonstrating that feedforward networks can approximate complex
price dynamics. However, standard ANNs struggle with sequential dependencies in time series
data due to their lack of memory mechanisms.

Recurrent Neural Networks (RNNs) address this limitation by maintaining hidden
states that carry information across time steps. Elman (1990) introduces simple RNN
architectures, but training difficulties due to vanishing/exploding gradients limited their
practical adoption until the development of Long Short-Term Memory (LSTM) networks.

2.3.2 LSTM and GRU Architectures

Hochreiter and Schmidhuber (1997) introduce LSTM networks with gating
mechanisms that enable learning long-range dependencies. LSTM cells use input, forget, and
output gates to regulate information flow, allowing gradients to propagate across many time
steps without vanishing. This breakthrough enabled successful applications to long-horizon
sequence modeling tasks.

Fischer and Krauss (2018) apply LSTM to S&P 500 stock prediction, achieving 2.1%
annualized excess returns after transaction costs. Their work demonstrates that LSTM can
extract profitable signals from high-dimensional feature spaces. However, LSTM's complexity
(requiring ~4x parameters compared to simpler variants) increases training time and
overfitting risk.

Cho et al. (2014) propose Gated Recurrent Units (GRU) as a simplified alternative to
LSTM. GRU reduces three gates to two (reset and update), decreasing parameters by
approximately 25% while maintaining comparable performance. Chung et al. (2014)
empirically demonstrate that GRU matches LSTM accuracy on most sequence modeling tasks
while training 30-40% faster. This efficiency advantage makes GRU particularly attractive for
financial applications requiring frequent model retraining.

2.3.3 Deep Learning for Gold Forecasting

Recent studies have begun applying deep learning to gold price prediction.
Kristjanpoller and Minutolo (2018) employ hybrid CNN-LSTM models for gold forecasting,
achieving MAPE of 1.8% for one-week-ahead predictions. Their feature set includes technical
indicators but excludes macroeconomic variables, limiting economic interpretability.

Livieris et al. (2020) compare various LSTM architectures for gold prediction using only
historical prices. They report RMSE improvements of 15-20% over ARIMA baselines. However,
their models lack statistical validation of feature importance and provide no analysis of regime-
dependent performance.

Patel et al. (2022) apply attention mechanisms to gold forecasting, achieving directional
accuracy of 58% for daily predictions. Their attention analysis reveals that recent time steps
(t-1 to t-5) receive highest weights, but they do not investigate whether attention patterns
differ across market regimes.

Critical Gap: Despite growing interest in deep learning for gold forecasting, no prior
study systematically examines how model performance varies across volatility regimes. This
represents a significant oversight, as practical deployment requires understanding when
models can be trusted versus when their predictions become unreliable.
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2.4.1 Theoretical Foundations

Granger (1969) introduces the concept of causality in time series: variable X "Granger-
causes" Y if past values of X improve prediction of Y beyond what past values of Y alone provide.
Formally, in a bivariate VAR model:

P P
Y =ap Zﬂin—i f Zﬁ-in—i b g
i1 i1

X Granger-causes Y if the joint hypothesis p; = B, =...= 8, = Ocan be rejected. This

framework provides rigorous statistical validation of predictive relationships beyond mere
correlation.

2.4.2 Applications in Finance

Granger causality has been extensively applied to financial markets. Cheung and Ng
(1996) test causality between US and Japanese stock markets, documenting bidirectional
relationships. Hong (2001) extends Granger tests to non-linear settings, showing that volatility
spillovers often exhibit causal relationships even when returns do not.

In gold markets, several studies employ Granger causality. Reboredo (2013) tests
causality between gold and oil prices, finding unidirectional causality from oil to gold at weekly
frequency. Bouri et al. (2017) examine gold-Bitcoin causality, reporting time-varying
relationships that strengthen during high-volatility periods. However, these studies focus on
bivariate relationships rather than multivariate feature selection for forecasting models.

2.4.3 Integration with Machine Learning

Recent work has begun integrating Granger causality tests with machine learning
feature selection. Tank et al. (2018) develop neural Granger causality methods using sparse
penalties. Nauta et al. (2019) propose attention-based architectures that implicitly learn causal
structures. However, these approaches remain largely unexplored in financial forecasting
contexts.

Our Contribution: We employ Granger causality as a pre-screening step before model
training, ensuring that included features have statistically validated predictive power rather
than spurious correlations. This bridges econometric rigor with machine learning flexibility.

2.5 Volatility Index (VIX) and Market Regimes
2.5.1 VIX as Market Fear Gauge

The CBOE Volatility Index (VIX) represents implied volatility derived from S&P 500
options prices, reflecting market expectations of 30-day forward volatility. Whaley (2000)
demonstrates that VIX spikes precede market downturns, earning it the moniker "fear gauge."
VIX values below 15 typically indicate complacency, 15-25 represents normal uncertainty, and
above 25-30 signals crisis conditions.

2.5.2 VIX-Gold Relationship

Several studies document contemporaneous correlation between VIX and gold prices.
Baur and McDermott (2010) show that gold appreciates when VIX exceeds crisis thresholds

(VIX>30). Dee et al. (2013) report correlation coefficients of 0.15-0.25 between daily VIX
|
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changes and gold returns during 2007-2012, with correlations strengthening to 0.45 during
extreme events.

However, these studies examine contemporaneous relationships rather than lagged
predictive power. No prior research has tested whether VIX changes Granger-cause gold
returns, despite theoretical predictions that fear spikes should predict subsequent gold inflows
as investors rebalance portfolios.

2.5.3 Regime-Switching Models

Regime-switching models explicitly incorporate state-dependent dynamics. Hamilton
(1989) introduces Markov-switching models where parameters shift between discrete states.
In gold markets, Hammoudeh and Yuan (2008) identify two regimes (calm and volatile) with
different return distributions and persistence properties.

However, regime-switching models typically identify regimes endogenously through
maximum likelihood, without linking them to observable indicators like VIX. Our approach uses
VIX-based regime classification, providing transparent, real-time regime identification for
practical deployment.

2.6 Research Gaps and Study Positioning
Based on the literature review, we identify four critical gaps this study addresses:
Gap 1: Regime-Dependent Forecasting
e Literature: Studies examine gold forecasting or regime detection separately

e Gap: No systematic analysis of how prediction accuracy varies across VIX-defined
volatility regimes

e Our Contribution: First study to document that calm period RMSE (0.61%) is 54%
lower than crisis period RMSE (1.34%)

Gap 2: Lagged VIX Predictive Power
e Literature: VIX-gold correlation documented but only contemporaneously
e Gap: No Granger causality tests of VIX = gold returns

e Our Contribution: Empirically establish VIX change Granger-causes gold returns across
all tested lags (p<0.001)

Gap 3: Statistical Feature Validation
e Literature: Deep learning studies include features without causality testing
e Gap: Risk of overfitting to spurious correlations

e Our Contribution: Pre-screen features via Granger causality before model training,
ensuring statistical rigor

Gap 4: Model Robustness Assessment
e Literature: Model comparisons typically use single train-test split

e Gap: Unknown whether ML superiority persists across regimes
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e Our Contribution: Walk-forward validation across 69 iterations reveals GRU
advantages are regime-dependent

These gaps collectively represent a significant opportunity: by integrating statistical
validation, regime analysis, and machine learning, we provide a more rigorous and practically
useful framework for gold forecasting.

3. RESEARCH METHODOLOGY
3.1 Research Design

This study employs a quantitative approach with experimental design comparing
multiple forecasting models across different market volatility regimes. The research
framework consists of four main stages: (1) data collection and preprocessing, (2) statistical
validation via Granger causality tests, (3) model development and training, and (4) regime-
specific evaluation using walk-forward validation. Figure 1 illustrates the complete research
workflow.

3.2 Data Collection and Preprocessing
3.2.1 Data Sources

We collect daily closing prices from Yahoo Finance for the period September 17, 2014 to
November 7, 2025, yielding 2,773 observations. This timeframe encompasses multiple market
cycles including:

e 2015-2016: Commodity price crisis

e 2018: US-China trade war volatility

e 2020: COVID-19 pandemic shock

e 2022: Inflation surge and monetary tightening
e 2023-2025: Post-pandemic normalization

The dataset includes five primary instruments:

Gold Futures (GC=F): Target variable, representing institutional gold pricing
VIX Index (*VIX): CBOE Volatility Index, market fear gauge

US Dollar Index (DX-Y.NYB): DXY currency strength indicator

S&P 500 (*GSPC): Equity market benchmark

Bitcoin (BTC-USD): Alternative asset consideration

AR

Data Quality Checks:

e Missing value analysis: <0.5% missing observations handled via forward-fill
e Outlier detection: Winsorization at 0.5th and 99.5th percentiles
e Stationarity verification: ADF tests confirm all series stationary at p<0.01

3.2.2 Feature Engineering

Percentage Returns: To address scale disparities (Bitcoin: $315-$103,568 vs Gold: $1,045-
$2,685), all prices are transformed to percentage returns:

PP
rp = ——— x 100
' P,

Technical Indicators:
|
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e RSI(14-day): Relative Strength Index measuring momentum
e Rolling Volatility (20-day): Standard deviation of returns
e 30-day Correlation: Time-varying gold-Bitcoin relationship

VIX-Based Features:

¢ VIX Level: Raw index value
e VIX Change: First difference (A VIX)
e VIX Regime: Categorical classification

Regime Cases
if VIX < 15 Calm
if 15 <VIX < 25 Normal
if VIX > =25 Crisis

Final Feature Matrix (12 variables):

Feature Type Description

gold_return Target/Input Gold percentage returns
dxy_return Macro US Dollar Index returns
5p500_return Macro S&P 500 returns

vix_level Macro VIX level

vix_change Macro VIX first-difference

gold_rsi Technical Gold RSI (14-day)
gold_volatility Technical Gold rolling volatility (20-day)
vix_regime Regime Market state indicator

Note: Bitcoin features excluded from final model based on Granger causality results (see
Section 4.1).

3 3.3 Statistical Validation: Granger Causality Tests
3.3.1 Methodology

Before model training, we rigorously validate feature selection using Granger causality. For
predictor X and target Y (gold returns), we test:

Hj: X does not Granger-cause Y

Using bivariate VAR framework:
P p
Y, =g+ Z ;Y 4 Zﬂ-&Xs—i t e
i=1 i=1

Null hypothesis Hy: ;1 = p, =...= B, = 0 tested via F-statistic.

Test Specifications:

Muhammad Fikri (The Impact of Market Volatility Regimes on Gold Price Prediction Accuracy: A VIX-
Based Machine Learning Approach)



Datokarama Journal of Information Technology 39

e Lagorders:p€{1,3,5,7, 10,15} days

e Significance level: a = 0.05

e Software: Python statsmodels.tsa.stattools.grangercausalitytests
3.3.2 Stationarity Pre-Testing

Granger tests require stationary series. Augmented Dickey-Fuller (ADF) tests verify:

P
AY, =t ft+ Yo+ ) EAY, it e

i=1

Testing Hy: ¥ = O(unit root) vs Hy:y < 0 (stationary).
Results: All return series reject unit root at p<0.01, confirming stationarity.
3.4 Model Architectures
3.4.1 Baseline: ARIMA Model
ARIMA(p,d,q) serves as traditional baseline:
¢(B)(1 - B)'Y; = 6(B)e;
where:

e p=autoregressive order

e d =differencing order (d=0 for stationary returns)
e g =moving average order

e B =Dbackshift operator

3.4.2 LSTM (Long Short-Term Memory)
Architecture:

e Input: 60-day lookback window (T=60, d=8 features)
e LSTM Layer 1: 128 units

e Dropout: 0.3

e LSTM Layer 2: 64 units

e Dropout: 0.2

e Dense Layer 1: 32 units, ReLU activation

e QOutput Layer: 2 units (1-day, 7-day predictions)

3.4.3 GRU (Gated Recurrent Unit)
Architecture:

e Input: 60-day lookback (T=60, d=8)
e GRU Layer 1: 128 units
e Dropout: 0.4
e GRU Layer 2: 32 units
e Dropout: 0.3
e Dense Layer 1: 64 units, ReLU
o Dense Layer 2: 32 units, ReLU
-+ Outputlayer: Zunits
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3.5 Training Procedure

3.5.1 Loss Function

Huber loss combines MSE sensitivity with MAE robustness:
L(y,5) = {4~ 5)° ifly 31 <88(ly 5~ +8) otherwise

with §=1.0, balancing small error precision and outlier robustness.
3.5.2 Optimization

e Algorithm: Adam optimizer

e Learningrate: 0.00763 (Optuna-selected)
e Batchsize: 128

e Early stopping: Patience=20 epochs

e Max epochs: 200

3.5.3 Direct Multi-Horizon Prediction
Unlike iterative forecasting (which compounds errors), we use direct prediction:

¢ Model outputs 2-dimensional vector: [1-day forecast, 7-day forecast]
e Each horizon trained simultaneously
e Reduces error accumulation

3.6 Evaluation Metrics
Point Forecast Accuracy:

1. RMSE (Root Mean Squared Error):

N
1
RMSE= |2 (= 9)?

i=1
2. MAE (Mean Absolute Error):
1 .
MAE ZNZ =9
=

3. RZ (Coefficient of Determination):
Rz 1 _20i” 91)?
Y —¥)?

Directional Accuracy:

N
1
DA = Nz 1[sign(y;) = sign(¥;)] X 100%

=1

Bias (Systematic Over/Under-prediction):
|
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N
1
Bias = NZ i =9
i=

3.8 Software and Computational Setup

e Programming Language: Python 3.10

e Deep Learning: TensorFlow 2.13.0 + Keras

o Statistical Tests: statsmodels 0.14.0

e Optimization: Optuna 3.3.0

e Hardware: Google Colab (Tesla T4 GPU when available)

e Training Time: ~90 minutes total (30 Optuna trials + final training)

4. RESULTS AND ANALYSIS
4.1 Granger Causality Test Results
Table 1 presents statistical validation of predictive relationships.

Table 1: Granger Causality Test Results

Significant Best F-
Predictor Correlation p-valuve Interpretation
Lags Lag stat
VIX Change 0.010 6/6 3days | <0.001*** | 9.676 | Very Strong
DXY Returns -0.401%** 4/6 3days | 0.004** 4.486 | Strong
S&P 500
0.027 5/6 15days | 0.001*** | 2,580 | Strong
Returns
Bitcoin
0.078** 0/6 3 n.s. 1.566 | None
Returns

Note: *** p<0.001, ** p<0.01, * p<0.05. Tests conducted at lags {1,3,5,7,10,15} days.
4.2 Model Performance Comparison
Table 2 summarizes overall performance across all regimes.

Table 2: Overall Model Performance (Walk-Forward Validation)

Model RMSE (%) MAE (%) R? Dir.Acc (%) Training Time
ARIMA 1.243 0.967 0.092 49.8 5min

LSTM 1.067 0.814 0.245 50.9 45 min

GRU 0.979 0.743 0.304 51.2 35min

4.3 Performance by Prediction Horizon
Table 3 decomposes accuracy by forecasting horizon.

Table 3: GRU Performance by Horizon

Horizon RMSE (%) MAE (%) R* Dir.Acc (%) Bias (%)
1-day 0.674 0.489 0.531 56.3 +0.012
7-day 0.221 0.734 0.298 52.4 -0.003

4.5 Model Comparison Across Regimes
|
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Table 5 compares all three models in each regime.

Table 5: RMSE (%) by Model and Regime

Model Calm Normal Crisis Advantage
ARIMA 1.087 1245 1.456 None

LSTM 0.689 0.983 1.398 Calm/Normal
GRU 0.614 0.927 1.341 All regimes

5. DISCUSSION

5.1 Principal Findings

This study provides three major contributions to gold forecasting literature:
Finding 1: VIX as Lagged Predictor (Addresses Gap 2)

We establish, for the first time, that VIX change Granger-causes gold returns with statistically
significant relationships across all tested lags (1-15 days, all p<0.001). The optimal 3-day lag
suggests flight-to-safety mechanisms operate with short delays, likely reflecting:

e Portfolio manager decision-making time (1-2 days)
e Order execution and settlement (T+2)
e Gradual information diffusion across investor types

Previous studies documented only contemporaneous VIX-gold correlation (Baur & McDermott,
2010; Dee et al., 2013). Our finding extends this to predictive power, enabling proactive rather
than reactive gold allocation strategies.

Finding 2: Regime-Dependent Forecasting (Addresses Gap 1)

The dramatic accuracy variation across volatility regimes—Calm RMSE of 0.614% versus Crisis
RMSE of 1.341% (118% increase)—represents a critical insight for practical implementation.
This finding suggests:

Economic Interpretation:

e During calm periods, gold behaves according to stable, mean-reverting patterns
amenable to quantitative modeling

e During crises, structural breaks and panic-driven flows overwhelm historical
relationships

e The VIX threshold at 25 represents a critical regime boundary where model reliability
deteriorates sharply

Practical Implications:
¢ Risk management systems should employ regime-specific confidence intervals
e Position sizing should scale inversely with VIX level
e Manual oversight becomes essential when VIX > 25

Finding 3: Machine Learning Robustness Assessment (Addresses Gap 4)
|
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Our walk-forward validation across 69 iterations reveals that GRU's superiority over
traditional methods persists across all regimes but diminishes during crises:

e Calm: 44% RMSE advantage
¢ Normal: 26% advantage
e C(risis: 8% advantage

This pattern suggests complex models extract value from stable patterns but offer limited
advantage when noise dominates signal. The finding has implications for model selection:
during sustained high-volatility periods, simpler models may suffice, reducing computational
costs.
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